Short term electricity load forecasting for institutional buildings
نویسندگان
چکیده
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort - term thermal and electric load forecasting in buildings
Increasing environmental awareness and energy costs encourage the increase of the contribution of renewable energy sources (RES) to the energy supply of buildings. However, the integration of RES and energy storage systems introduces significant challenges for the energy management system (EMS) of complex building energy systems. An energy management strategy based on fixed control rules may fa...
متن کاملShort Term Electricity Load Forecasting on Varying Levels of Aggregation
We propose a simple empirical scaling law that describes load forecasting accuracy at different levels of aggregation. The model is justified based on a simple decomposition of individual consumption patterns. We show that for different forecasting methods and horizons, aggregating more customers improves the relative forecasting performance up to specific point. Beyond this point, no more impr...
متن کاملANN-based Short-Term Load Forecasting in Electricity Markets
This paper proposes an Artificial Neural Network (ANN)-based short-term load forecasting technique that considers electricity price as one of the main characteristics of the system load, demonstrating the importance of considering pricing when predicting loading in today’s electricity markets. Historical load data from the Ontario Hydro system as well as pricing information from the neighboring...
متن کاملResearch in Residential Electricity Characteristics and Short-Term Load Forecasting
In this paper we make research in Residential short-term load forecasting. Different application scenes have different affecting factors of short-term load, so we should specifically analysis of factors that affect the load of the residential electricity. We use SPSS (Statistic Package for Social Science) to figure out the relationship between the daily load and temperature, weather conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Reports
سال: 2019
ISSN: 2352-4847
DOI: 10.1016/j.egyr.2019.08.086